Introduction to Pre-trained Models Training Course
Pre-trained models are a cornerstone of modern AI, offering pre-built capabilities that can be adapted for a variety of applications. This course introduces participants to the fundamentals of pre-trained models, their architecture, and their practical use cases. Participants will learn how to leverage these models for tasks such as text classification, image recognition, and more.
This instructor-led, live training (online or onsite) is aimed at beginner-level professionals who wish to understand the concept of pre-trained models and learn how to apply them to solve real-world problems without building models from scratch.
By the end of this training, participants will be able to:
- Understand the concept and benefits of pre-trained models.
- Explore various pre-trained model architectures and their use cases.
- Fine-tune a pre-trained model for specific tasks.
- Implement pre-trained models in simple machine learning projects.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to Pre-trained Models
- What are pre-trained models?
- Benefits of using pre-trained models
- Overview of popular pre-trained models (e.g., BERT, ResNet)
Understanding Pre-trained Model Architectures
- Model architecture basics
- Transfer learning and fine-tuning concepts
- How pre-trained models are built and trained
Setting Up the Environment
- Installing and configuring Python and relevant libraries
- Exploring pre-trained model repositories (e.g., Hugging Face)
- Loading and testing pre-trained models
Hands-On with Pre-trained Models
- Using pre-trained models for text classification
- Applying pre-trained models to image recognition tasks
- Fine-tuning pre-trained models for custom datasets
Deploying Pre-trained Models
- Exporting and saving fine-tuned models
- Integrating models into applications
- Basics of deploying models in production
Challenges and Best Practices
- Understanding model limitations
- Avoiding overfitting during fine-tuning
- Ensuring ethical use of AI models
Future Trends in Pre-trained Models
- Emerging architectures and their applications
- Advances in transfer learning
- Exploring large language models and multimodal models
Summary and Next Steps
Requirements
- Basic understanding of machine learning concepts
- Familiarity with Python programming
- Basic knowledge of data handling using libraries like Pandas
Audience
- Data scientists
- AI enthusiasts
Need help picking the right course?
Introduction to Pre-trained Models Training Course - Enquiry
Upcoming Courses
Related Courses
AdaBoost Python for Machine Learning
14 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at data scientists and software engineers who wish to use AdaBoost to build boosting algorithms for machine learning with Python.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start building machine learning models with AdaBoost.
- Understand the ensemble learning approach and how to implement adaptive boosting.
- Learn how to build AdaBoost models to boost machine learning algorithms in Python.
- Use hyperparameter tuning to increase the accuracy and performance of AdaBoost models.
Anaconda Ecosystem for Data Scientists
14 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at data scientists who wish to use the Anaconda ecosystem to capture, manage, and deploy packages and data analysis workflows in a single platform.
By the end of this training, participants will be able to:
- Install and configure Anaconda components and libraries.
- Understand the core concepts, features, and benefits of Anaconda.
- Manage packages, environments, and channels using Anaconda Navigator.
- Use Conda, R, and Python packages for data science and machine learning.
- Get to know some practical use cases and techniques for managing multiple data environments.
AutoML with Auto-Keras
14 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at data scientists as well as less technical persons who wish to use Auto-Keras to automate the process of selecting and optimizing a machine learning model.
By the end of this training, participants will be able to:
- Automate the process of training highly efficient machine learning models.
- Automatically search for the best parameters for deep learning models.
- Build highly accurate machine learning models.
- Use the power of machine learning to solve real-world business problems.
AutoML
14 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at technical persons with a background in machine learning who wish to optimize the machine learning models used for detecting complex patterns in big data.
By the end of this training, participants will be able to:
- Install and evaluate various open source AutoML tools (H2O AutoML, auto-sklearn, TPOT, TensorFlow, PyTorch, Auto-Keras, TPOT, Auto-WEKA, etc.)
- Train high quality machine learning models.
- Efficiently solve different types of supervised machine learning problems.
- Write just the necessary code to initiate the automated machine learning process.
Creating Custom Chatbots with Google AutoML
14 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at participants with varying levels of expertise who wish to leverage Google's AutoML platform to build customized chatbots for various applications.
By the end of this training, participants will be able to:
- Understand the fundamentals of chatbot development.
- Navigate the Google Cloud Platform and access AutoML.
- Prepare data for training chatbot models.
- Train and evaluate custom chatbot models using AutoML.
- Deploy and integrate chatbots into various platforms and channels.
- Monitor and optimize chatbot performance over time.
DataRobot
7 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at data scientists and data analysts who wish to automate, evaluate, and manage predictive models using DataRobot's machine learning capabilities.
By the end of this training, participants will be able to:
- Load datasets in DataRobot to analyze, assess, and quality check data.
- Build and train models to identify important variables and meet prediction targets.
- Interpret models to create valuable insights that are useful in making business decisions.
- Monitor and manage models to maintain an optimized prediction performance.
Data Mining with Weka
14 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at beginner to intermediate-level data analysts and data scientists who wish to use Weka to perform data mining tasks.
By the end of this training, participants will be able to:
- Install and configure Weka.
- Understand the Weka environment and workbench.
- Perform data mining tasks using Weka.
Google Cloud AutoML
7 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at data scientists, data analysts, and developers who wish to explore AutoML products and features to create and deploy custom ML training models with minimal effort.
By the end of this training, participants will be able to:
- Explore the AutoML product line to implement different services for various data types.
- Prepare and label datasets to create custom ML models.
- Train and manage models to produce accurate and fair machine learning models.
- Make predictions using trained models to meet business objectives and needs.
Kaggle
14 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at data scientists and developers who wish to learn and build their careers in Data Science using Kaggle.
By the end of this training, participants will be able to:
- Learn about data science and machine learning.
- Explore data analytics.
- Learn about Kaggle and how it works.
Machine Learning for Mobile Apps using Google’s ML Kit
14 HoursThis instructor-led, live training in (online or onsite) is aimed at developers who wish to use Google’s ML Kit to build machine learning models that are optimized for processing on mobile devices.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start developing machine learning features for mobile apps.
- Integrate new machine learning technologies into Android and iOS apps using the ML Kit APIs.
- Enhance and optimize existing apps using the ML Kit SDK for on-device processing and deployment.
Accelerating Python Pandas Workflows with Modin
14 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at data scientists and developers who wish to use Modin to build and implement parallel computations with Pandas for faster data analysis.
By the end of this training, participants will be able to:
- Set up the necessary environment to start developing Pandas workflows at scale with Modin.
- Understand the features, architecture, and advantages of Modin.
- Know the differences between Modin, Dask, and Ray.
- Perform Pandas operations faster with Modin.
- Implement the entire Pandas API and functions.
Machine Learning with Random Forest
14 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at data scientists and software engineers who wish to use Random Forest to build machine learning algorithms for large datasets.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start building machine learning models with Random forest.
- Understand the advantages of Random Forest and how to implement it to resolve classification and regression problems.
- Learn how to handle large datasets and interpret multiple decision trees in Random Forest.
- Evaluate and optimize machine learning model performance by tuning the hyperparameters.
Advanced Analytics with RapidMiner
14 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at intermediate-level data analysts who wish to learn how to use RapidMiner to estimate and project values and utilize analytical tools for time series forecasting.
By the end of this training, participants will be able to:
- Learn to apply the CRISP-DM methodology, select appropriate machine learning algorithms, and enhance model construction and performance.
- Use RapidMiner to estimate and project values, and utilize analytical tools for time series forecasting.
RapidMiner for Machine Learning and Predictive Analytics
14 HoursRapidMiner is an open source data science software platform for rapid application prototyping and development. It includes an integrated environment for data preparation, machine learning, deep learning, text mining, and predictive analytics.
In this instructor-led, live training, participants will learn how to use RapidMiner Studio for data preparation, machine learning, and predictive model deployment.
By the end of this training, participants will be able to:
- Install and configure RapidMiner
- Prepare and visualize data with RapidMiner
- Validate machine learning models
- Mashup data and create predictive models
- Operationalize predictive analytics within a business process
- Troubleshoot and optimize RapidMiner
Audience
- Data scientists
- Engineers
- Developers
Format of the Course
- Part lecture, part discussion, exercises and heavy hands-on practice
Note
- To request a customized training for this course, please contact us to arrange.
GPU Data Science with NVIDIA RAPIDS
14 HoursThis instructor-led, live training in Saudi Arabia (online or onsite) is aimed at data scientists and developers who wish to use RAPIDS to build GPU-accelerated data pipelines, workflows, and visualizations, applying machine learning algorithms, such as XGBoost, cuML, etc.
By the end of this training, participants will be able to:
- Set up the necessary development environment to build data models with NVIDIA RAPIDS.
- Understand the features, components, and advantages of RAPIDS.
- Leverage GPUs to accelerate end-to-end data and analytics pipelines.
- Implement GPU-accelerated data preparation and ETL with cuDF and Apache Arrow.
- Learn how to perform machine learning tasks with XGBoost and cuML algorithms.
- Build data visualizations and execute graph analysis with cuXfilter and cuGraph.